Hydric Soil—Soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part.

- temperature
- microbial (organics)
- saturation
- time

Technical Standard—Designed to:

- a. Evaluate the function of wetland restoration, mitigation, creation, and construction
- b. Evaluate onsite the current functional hydric status of a soil
- c. With appropriate regional data modify, validate, eliminate, or adopt hydric soil field indicators for the region.
 - Anaerobic Conditions
 - Eh meter/electrodes
 - Visible evidence of Fe or Mn migration
 - Alpha Alpha Dipyridyl indicator
 - IRIS, MRIS tubes
 - Growing season
 - Saturated
 - o Wells, piezometers

Indicators------ http://soils.usda.gov/use/hydric/

- Designed to identify boundary conditions
- Require morphologic changes (visible)
- \circ Loss of Fe³⁺, Mn⁴⁺
- Depletions, Concentrations
- Gleying (color indicator)
 - Munsell Color Books
 - Hue, Value Chroma
- Organic Matter accumulation
- o Difficult to use
 - High chroma materials
 - High pH
 - Low organic matter
 - Young
 - Altered

Reduction-Oxidation Table (Adapted from the Redox Ladder)

What is being reduced = the available electron acceptor	Byproduct of the oxidation- reduction process	Relative yield of energy from the oxidation- reduction process	Are the conditions aerobic (oxygen is present) or anaerobic (oxygen not present)
oxygen O ₂	carbon dioxide CO ₂	100	aerobic
nitrate NO ₃	<u>nitrogen</u> N	93	anaerobic
manganese (IV) Mn ⁴⁺	manganese (II) Mn ²⁺	87	anaerobic
iron (III) Fe ³⁺	iron (II) Fe ²⁺	84	anaerobic
sulfate SO ₄	hydrogen sulfide HS	6	anaerobic
carbon dioxide CO ₂	methane CH4	3	anaerobic