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I. Introduction 

In collaboration with The Nature Conservancy and The Conservation Technology Information 
Center (CTIC), Applied GeoSolutions and Dagan, Inc mapped agricultural conservation practices 
and the associated environmental outcomes across the Corn Belt from 2005 to 2018.  This project 
implements two technologies.  The Operational Tillage Information System (OpTIS), a remote 
sensing tool that uses earth-observing satellite data to document the adoption of soil health 
practices. And, the DeNitrification DeComposition (DNDC) model, a process-based model of 
carbon and nitrogen biogeochemistry in soil, to estimate the outcomes associated with changes in 
management (Gilhespy et al. 2014). 

As part of this mapping effort, the OpTIS team organized the collection of field observations of 
practices across the Corn Belt for use in validating the satellite-based estimates.  Crop consultants in 
30 regions across the Corn Belt were hired and asked to use OpTIS Mobile, a mobile app developed 
by Applied Geosolutions with funding from The Nature Conservancy.  The mobile app guided the 
data collectors through the roadside survey process and uploaded the survey results and 
photographs directly into a database deployed and maintained by Applied GeoSolutions.  

II. Study Area  

The area analyzed for this project is defined by the extent of the Land Resources Region-M (LRR-
M; Central Feed; Grains and Livestock Region) (Figure 1).  As mapping by OpTIS is parameterized 
and executed at the HUC 8 (Hydrologic Unit Code for subbasin level having 8 digits) watershed 
scale, the main criteria for inclusion in the analysis started with HUC 8 boundaries that intersect the 
LRR-M.  The initial set of watersheds intersecting the LRR-M was modified to include additional 
adjacent areas of interest near Lake Erie and exclude watersheds low in agricultural land cover.  We 
identified a total of 274 HUC 8 watersheds for inclusion in the analysis. 

Aggregation for reporting of results is done at various spatial units, including counties, crop 
reporting districts (CRD), states, and HUC 8 watersheds.  Counties where at least 75 % of the area 
overlapped with a HUC 8 watershed in the study area were included in county reporting (Figure 1).  
For CRD reporting, CRDs where at least two counties overlapped with HUC 8s were included.  
And for state reporting, each state with at least one reported HUC 8 watershed contained entirely 
within the state was included.  Reporting was done on a total of 12 states, 70 CRDs, and 645 
counties. 
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Figure 1. OpTIS mapping was done for a total of 645 counties (yellow) in and around the Land 
Resources Region-M (grey line) in the Corn Belt. 

III. Methods and Assumptions 

The project time period covers the 2005 to 2017 crop years in their entirety.  In addition, we provide 
OpTIS results from the 2018 crop year.  A crop year in this project is defined as 1 November of the 
previous year through 31 October of the crop year.  For example, the 2005 crop year extends from 1 
November 2004 through 31 October 2005. 

The fundamental unit of analysis in this study is a field segment defined as a contiguous set of 30-
meter pixels with the same crop history between 2008 and 2017, based on crop classification data 
from the Cropland Data Layer (CDL).  Field segments with < 10 acres are discarded from the 
analysis.  Fields that border roads are often ‘eroded’ as a result of the effects of half-pixel shifts 
common to image registration from year-to-year.  To account for crop area lost due to the edge 
erosion and minimum field size, a HUC 8 area-adjustment factor is calculated and applied to adjust 
the reporting size of each field segment.  The adjustment factor is calculated as total CDL pixel crop 
area divided by total segment crop area within each HUC 8.  The reported area of each segment 
within the HUC 8 is calculated as segment area times HUC 8 adjustment factor.  More than 1.7 
million segments were analyzed as part of this project. 
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A. OpTIS Mapping of Agricultural Practices 

1. Inputs and Assumptions 

OpTIS generates estimates of residue cover, tillage practices, cover crops, and days of cover (by 
residue and living green vegetation) at the sub-field scale, which are then summarized at the field 
segment scale for input to DNDC modeling.  Data are sourced from MODIS sensors on Terra and 
Aqua, Landsat 5, Landsat 7, Landsat 8, Sentinel 2A, and Sentinel 2B.  These observations are cloud 
masked and reprojected onto a 30-meter grid in Albers Equal Area projection.  Cropland Data Layer 
(USDA-NASS CDL, 2019) is used to identify field segments and crop rotations.  Precipitation from 
PRISM (PRISM Climate Group, 2019) is used in the OpTIS algorithms to account for soil and crop 
residue moisture effects. 

Median plant and harvest dates are estimated at the HUC8 level each year using a time series of 
MODIS NDVI observations.  These dates are used to parameterize the residue cover and cover 
crop mapping, but not as input to DNDC.  

Areas of permanent grasslands and pasture were removed from the analysis.  Areas growing alfalfa 
or hay for fewer than six years of the study period were included in the analysis. Areas identified as 
being converted to or from row crop agriculture during the study time period were excluded from 
the analysis. 

We summarized OpTIS-mapped practices (residue cover, tillage, and cover crop classes) at four 
geographic scales: county, crop reporting district, state, and HUC8 watersheds.  For each practice, 
we report area by previous crop year’s crop type category (corn, soybeans, small grains, and other).  
Thus, the total area summary for each practice for each previous crop is the sum of the adjusted area 
of all segments in the geographic unit with those practices and previous crops.  Area summaries are 
adjusted to the total adjusted segment area in a geography - we assume that the distribution of 
practice classes among segments with no data are the same as those with data. 

2. Residue and cover crop mapping 

Residue cover fraction is estimated in every available image for each location using the Normalized 
Difference Tillage Index (NDTI) and the Crop Residue Cover Index (CRC), parameterized at the 
HUC8 scale.  The time series of residue cover fraction at the pixel level is then analyzed for patterns 
and consistency, returning a residue cover fraction value together with a certainty level at the time of 
planting at the 30-m pixel scale.  For residue cover, the mean of all 30-meter pixels with a valid 
estimate within the field segment is calculated and reported.  The residue cover percentage at the 
field scale is categorized into one of four levels of residue cover: 

1. 0 to 15% - very low 
2. 16 to 30% - low 
3. 31 to 50% - moderate 
4. 51 to 100% - high 
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Ranges of residue within the residue classes were chosen to allow for consistency in matching with 
historical CTIC Crop Residue Management Survey data.  We also report on assumed tillage practices 
linked with these residue levels, derived from the residue cover levels and previous year's crop (i.e. 
residue type): 

1. Conventional tillage— same as very low residue cover level (0-15%) for all previous year 
crop types; 

2. Reduced tillage, low residue— same as low residue cover (16-30%) for all previous year 
crop types; 

3. Reduced tillage, high residue— moderate residue cover (31-50%) where corn was the 
previous year's crop; 

4. No-till— moderate residue cover (31-50%) where any crop except corn was the previous 
year's crop and high residue cover (51-100%) for all previous year crop types 

Winter cover is estimated with a time series of the Normalized Difference Vegetation Index 
(NDVI), extending from November through July of each crop year.  Timing and intensity of 
greenness is compared to thresholds set at the HUC8 scale to determine cover status.  Each pixel is 
classified into one of six classes: 

1. No cover 
2. Commodity crop (winter wheat) 
3. Spring emergent 
4. Winter kill 
5. Full cover 
6. Not enough data to estimate 

For winter cover, the field segment is determined to be covered if 30% of the row crop pixels with a 
valid estimate within the field segment are classified as covered (winter cover classes 2, 3, 4, and 5 
listed above). The type of cover is determined from the most common cover class. 

 
Figure 2. Demonstration of OpTIS estimates of winter cover.  The algorithm works using a time 
series of Normalized Difference Vegetation Index (NDVI) as an estimate of green cover through 
the fall, winter, and spring. 
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Table 1. Data used in OpTIS mapping of tillage practices, cover crops, and crop rotations, as well as 
for DNDC simulations of soil carbon, greenhouse gas emissions, available soil moisture, and N 
leaching. 

Data Technology Agency Source 

Landsat OpTIS USGS/NASA www.usgs.gov/land-
resources/nli/landsat/landsat-data-access 

MODIS OpTIS NASA modis.gsfc.nasa.gov/data/ 

Sentinel 2 OpTIS ESA sentinel.esa.int/web/sentinel/sentinel-data-
access 

PRISM OpTIS & 
DNDC Oregon State University www.prism.oregonstate.edu/ 

Cropland Data 
Layer 

OpTIS & 
DNDC USDA www.nass.usda.gov/Research_and_Science/Cro

pland/SARS1a.php 
MIrAD-US DNDC USGS earlywarning.usgs.gov/USirrigation 

N deposition DNDC NADP NTN nadp.slh.wisc.edu/ntn/ 
annual survey, 
crop yield, 
fertilizer, 
harvested acres, 
irrigated status 

DNDC USDA NASS quickstats.nass.usda.gov/ 

Fertilizer type DNDC USDA ERS https://www.ers.usda.gov/data-
products/fertilizer-use-and-price/ 

plant and harvest 
dates DNDC USDA NASS 

Field Crops, Usual Planting and Harvesting 
Dates, October 2010 - Agricultural Handbook 
Number 628 

SSURGO DNDC USDA NRCS www.nrcs.usda.gov/wps/portal/nrcs/detail/soil
s/survey/geo/?cid=nrcs142p2_053628 

atmospheric CO2 DNDC Scripps Inst. of 
Oceanography 

scrippsco2.ucsd.edu/data/atmospheric_co2/pri
mary_mlo_co2_record 

Crop biomass 
data DNDC 

Sustainable Corn 
Coordinated Agricultural 
Project (CAP) Team 
Research Data 

https://datateam.agron.iastate.edu/cscap/ 

B. DNDC Modeling 

1. Inputs and Assumptions 

Input data of area-weighted mean soil attributes were calculated for each segment using the NRCS 
SSURGO database.  Attributes for soil were derived by extracting representative values for clay (as a 
proxy for soil texture), organic matter, bulk density, and pH, the four soil parameters required for 
input to DNDC.  Organic matter was converted to soil organic carbon (SOC) by dividing organic 
matter by 2 (Pribyl, 2010). 

Seventeen major crops were simulated: corn, cotton, rice, sorghum, soybeans, sunflower, spring 
wheat, winter wheat, other small grains, rye, oats, alfalfa, other hay/non alfalfa, sugarbeets, dry 
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beans, potatoes, and peas.  Minor crops were not included in this list and were simulated as “other 
crops”.  Crop planting and harvesting dates were based on usual planting practices (NASS 2010).  
Hay crops (alfalfa and other hay) were cut twice in their first crop year and four times in any 
subsequent year. 

Crops were fertilized with urea-ammonium nitrate (UAN), the most common fertilizer type used in 
the US (NASS 2010).  Fertilizer rates used are based on state-based rates disaggregated to county-
level based on mean reported yields (NASS 2010). In addition, fertilizer rates were adjusted to 
within-county, soil-specific rates as part of our calibration process (see “crop parameter calibration” 
below).  Fertilizer was applied on plant date unless USDA-specified data indicated that more than 
one application was typical.  For corn, 20% fertilizer was applied at planting and 80% fertilizer 45 
days after planting. For other crops, we distributed N applications based on typical regional 
practices.  When following an N-fixing crop, fertilizer rates were reduced by 15% based on an 
analysis of data extracted from the ISU Corn Nitrogen Rate Calculator. 

Crop residue was assumed to remain on the soil surface following harvest.  In the case of harvested 
grain, this comprised 100% of the non-grain above-ground biomass.  Cover crops were terminated 
and 100% of the above ground biomass was left in place.  In the case of cut perennial crops (alfalfa 
or hay) 85% of the above-ground biomass was removed at each cut— at the end of each growing 
season, whatever senesced material remained was left on the soil surface. 

Tillage practices were simulated based on OpTIS-mapped data.  Spring tillage was implemented 5 
days prior to planting.  Fall tillage was implemented 5 days after harvest.  Conventional tillage was 
simulated with a 20 cm moldboard (top-soil inversion); reduced tillage was simulated with a 10 cm 
disk (top-soil mixing); no-till was simulated with no soil disturbance. 

Irrigation and flooding were also accounted for. Where rice was planted, we assumed a continuously 
flooded growing season and flooded the segment 30 days after planting and drained the segment 21 
days prior to harvest.  We used USGS MiRAD data to identify segments that are typically irrigated.  
For irrigated segments, we used DNDC’s irrigation index function to apply water weekly based on 
95% of plant demand. 

2. Crop Parameter Calibration 

Crop parameters regarding yield were calibrated to approximate yield patterns over time. For each 
crop in each county, we calibrated to county-level yield based on NASS 2010 reporting.  An 
automated process was used that iteratively adjusted crop parameters, including maximum biomass, 
relative biomass fractions, and carbon-to-nitrogen ratios of grain, leaf, stem, and root.  Ranges for 
these parameters were constrained using field-measured data from the USDA Corn CAP program. 
Calibration of crop parameters was done for 5-year timeframes to approximate changing variety 
selections over time. 
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An automatic calibration routine was applied to re-distribute fertilizer within the county to generate 
soil-specific N rates.  This redistribution minimized over-application of N on richer soils and under-
application on poorer soils, thus reducing the probability of unrealistic N losses (as either N2O on 
rich soils or NO3 leaching on coarse soils) or low yield on poor soils. 

3. Management Simulations 

To compare the simulated effects of OpTIS-mapped management to less-optimal soil health 
management, four scenarios were run (Table 2).  During the simulation runs, for each crop, auto-
calibration was run to pre-generate crop parameters and soil-based fertilizer rates.  An 18-year 
simulation from 2000 to 2017 was run for each segment for each scenario. The 2000 to 2004 
timeframe was run for all four scenarios using 2005 to 2009 OpTIS-mapped management output to 
initialize SOC and ensure that all scenarios started with the same soil conditions on the first day of 
the 2005 crop year.  Results for 2000 to 2004 were not included in summarized results. 

Table 2. Four scenarios run to simulate effects of OpTIS-mapped management to less-optimal soil 
health management.  Model simulations were simulated by county and proceeded as follows: 

DNDC Management Scenarios 

OpTIS-mapped “actual” distribution of soil health management practices in the study area 

All ConvTill first alternative scenario assumed conventional tillage all the time  

No CoverCrops second alternative scenario assumed no cover cropping 

All ConvTill & No 

Cover Crops 

third alternative scenario combined the first two alternative scenarios and 

simulated conventional tillage and no cover cropping across all years 

4. Post-processing 

DNDC modeling results for daily SOC, N2O, available soil water capacity (AWC), and NO3 leaching 
were extracted from 2005 to 2017 simulated results and converted to annual values.  The annual 
change to SOC (dSOC) for any crop year was calculated as last day SOC minus first day SOC for 
the top 50 cm of the soil profile. Annual total N2O and NO3 leaching were calculated as the sum of 
daily losses over the crop year. AWC was calculated as mean daily AWC for the crop year.  Spatially 
aggregated summaries, for county, crop reporting district, HUC8, and state-level, were calculated as 
area-weighted mean values using adjusted segment area.  Mean annual values at aggregated scales 
represent the 2005 to 2017 mean. 

C. Ground Truthing 

1. OpTIS Mobile 

Ground-level data obtained through photos and surveys were collected at agricultural field locations 
across the Corn Belt.  Initially, data collection in the spring of 2017was done via data tables filled out 
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by crop consultants upon field visits for Cresco County, Iowa and Christian County, Illinois.  
Starting in the fall of 2017, the development team at Applied Geosolutions launched the OpTIS 
Mobile app for Android and iOS platforms.  OpTIS Mobile was designed for roadside survey data 
collection by a crop consultant while minimizing errors associated with repeated data transcription 
from spreadsheets to database, or from tracking photo numbers, dates, and field locations (Figure 
3).  Over 90% of the field data used for validation in this project were collected using OpTIS 
Mobile.  

OpTIS Mobile surveys gather the following information: 

● Photos, location, date, time, and the direction the photo was taken 
● Visual estimate of green and residue cover, rounded to the nearest 5% 
● Crop type from the previous year and the coming year, if evident 
● Tillage practice, type of tillage, and estimated soil disturbance 
● Presence and health, and type of cover crops   
● Presence of volunteer crops or weeds 
● Broad estimates of soil moisture level and color 
● Field boundaries added manually by the data collector 

 
Figure 3. Schematic for identifying and drawing a field in the map screen of OpTIS Mobile app. 
Fields added are saved in a list of fields to be surveyed. 

2. Field Data Collection 

Independent crop consultants were identified via the National Alliance of Independent Crop 
Consultants (NAICC) website directory, the American Society of Agronomy website directory 
(https://www.agronomy.org/), and through personal references of district employees at state 
Natural Resources Conservation Services, the OSU Extension at Ohio State University, and the 
Indiana State Department of Agriculture. Crop consultants were asked to visit 40 fields in total.  The 
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OpTIS team selected 15 to 20 fields and crop consultants were tasked with identifying a set of 20 to 
25 additional fields digitized using the app when they encountered cover cropped fields.  
Requirements were to select large fields (~100 acres) following corn or soy crops within 
approximately a 30 min driving radius from their home address. The cluster of fields were scouted 
via the OpTIS Mobile on their mobile devices every two to three weeks starting from March 
through the planting season and again post-harvest. At every visit they were asked to estimate 
ground cover in terms of green vegetation, residue cover, and bare soil visible from the roadside.  
Categorical questions were updated as they saw evidence in the fields at the time of the scheduled 
re-visits. 

Field observations were collected via OpTIS Mobile in the fall of 2017 and the spring of 2018 
(Figure 4).  Ground validation was done across 43 counties in ten states in the Corn Belt, in areas 
that fall within the Land Resource Region M.  

 
Figure 4. A total of 59 counties were surveyed (blue) in the LRR-M region (orange line) in 2017 Fall 
(278 fields) and 2018 Spring (1,195 fields). 

3. Field Data Quality Control  

To ensure consistency of data collected we used a single generic mobile app survey to capture 
observations in cover crop and tillage changes.  In addition, our team implemented a quality control 
process on the data submitted by collectors.  The process was as follows: 
● Review and edit the field boundaries as entered by the data collector against imagery and 

Cropland Data Layer data to increase the chances that the boundaries contain only 
information from a single field 
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● Ensure the photo and observation match the field boundary drawn – compare the photo, 
photo location, and the field boundary 

● Remove duplicate submissions 
● Assign categorical answers per field for the previous and coming year's crop, tillage and 

cover crop 
● Quality check fractional green, soil, residue cover in survey compared to visual evidence in 

survey photos 

IV. Results 

Row crop fields totaling 131,605,000 acres were analyzed with OpTIS and DNDC for this project.  
A field-level comparison of the OpTIS results to the road-side surveys is presented here, with 
additional county-level comparison results to the AgCensus and other remote sensing-based 
mapping efforts. We also report on OpTIS and DNDC data trends across the Corn Belt.  

A. Remote Sensing Validation 

Roadside surveys and satellite-based estimates of conservation practices were compared to provide 
the team and the community with a clear understanding of utility and limits of this satellite-based 
technology.  The results from OpTIS were compared to roadside survey results for (1) cover crop 
and (2) residue cover.  

1. Cover crop  

For cover crop evaluation, we restricted the comparison to fields for which we had: 
1. valid remote sensing estimate for the field in that year (no-data fraction less than 0.70) 
2. indication that a perennial crop or a winter commodity crop was not growing on the field, 

according to the data collector 
3. multiple well-timed field visits and photos to ensure confidence in the field’s status as cover 

cropped or not 

The above restrictions resulted in observations for a set of 961 fields, for which 24% were 
determined to have a cover crop and 76% no cover crop.  The confusion matrix shows that the 
accuracy of the remote sensing is 87.9% and the kappa statistic is 0.63.  

Table 3. Confusion matrix table for classification of cover crops.  Green cells indicate the number 
of fields with agreeing classification of cover crops between remote sensing and reference (field) 
data (termed true negative and true positive).  White cells indicate the number of fields with 
disagreeing remote sensing classification and reference data, these are termed false negative and false 
positive. 

Cover Crop  
Classification from 

Field Data 
No Yes 
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Remote Sensing 
No  706 92 

Yes  24 139 
 

Below are results from comparisons, highlighting the information collected and the comparison 
procedure.  

False negative: Photos of field id 57-448 show cover crop green-up in April 2018 (Figure 5).   Cover 
crop is identified by the field observer, but pixels mapped by OpTIS are 0% cover cropped.   It’s 
possible that the green cover observed in the field might be extensive weed cover, rather than a 
cover crop.  The field observer classified this field as having cover crop but marked the cover type 
‘Unknown’.  
 

 

Figure 5. Roadside photos taken of field id- 57-448 in Missouri observed from 4/4/2018 to 
6/6/2018. The crop observed for 2017 is corn, 2017-2018 winter shows evidence of cover crop type 
that was not identifiable by the data collector, and 2018 crop is soybean. 

True negative: Roadside photos of field id 70-443 indicate there was no presence of a cover crop, and 
OpTIS also determined there was 0% cover cropping (Figure 6). The photos in December, March, 
and May indicate no sign of cover crop emergence. 
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Figure 6. Roadside photos for field id 70- 443 in Iowa observed from 12/5/2017 to 6/5/2018. The 
2017 crop was corn, 2017-2018 winter shows no cover crop, 2018 crop was corn. 

2. Residue Cover 
For residue cover evaluation, we restricted the comparison to fields for which we had: 

1. valid remote sensing estimate for the field in that year (no data fraction less than 0.70) 
2. multiple well-timed field visits and photos to ensure confidence in the field’s residue cover 

status at the time of planting; 

The agreement between OpTIS and field observations is 42.3%.  In contrast to the cover crop 
evaluation, we have four classes rather than two, and misclassification can range from relatively 
small differences (e.g. OpTIS reports 14% residue while field observer reports 20%) to large (e.g. 
OpTIS reports 10% residue, field observer reports 90%).  We used a weighted kappa statistic to 
account for differences in types of misclassification.  Instances where class disagreement is most 
severe (e.g. “Very low” is misclassified as “High”) have a weight of 16 times the cost of 
misclassifying in adjacent classes (e.g. “Very low” as “Low”) and 4 times the cost of an in-between 
misclassification (e.g. “Very low” as “Moderate”).  The weighted kappa statistic reported on residue 
cover is 0.67. 

In sum, the team collected 827 valid field observations of residue cover from the springs of 2017 
and 2018.  We compared OpTIS-estimated residue cover to roadside-estimated residue cover in 
several ways. First, we note that the average residue cover from OpTIS for these 827 fields is 36.9%, 
while the field observed mean is 41.2% - a difference of 4.3%.  The Pearson’s correlation between 
OpTIS estimated residue cover and field estimated residue cover is 0.683.  Put in other terms, 
OpTIS explains 46.7% of the variance observed in the field residue cover.  The mean absolute 
deviation and root mean squared error of the OpTIS estimates are 17.5 and 21.4, respectively.  

 
Figure 7. OpTIS and field residue cover observations has an R2 of 0.467. 

3. Misclassification and Bias 

It is important to note that roadside visual estimates of residue cover are subject to error and bias.  
We conducted a comparison of the visual estimates of four analysts in estimating residue cover from 
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the same set of photos taken from the roadside.  We note that the Mean Absolute Deviation of 
these observations from four analysts across 45 fields is 12.9.  

In two cases, we noted an extreme misclassification. There is an instance where a field is identified 
by a crop consultant as having more than 50% residue cover (no-till) was estimated by OpTIS to 
have less than 15% residue cover, or conventional till classification.  And, a reverse case where a 
field survey suggests less than 15% residue while OpTIS estimated greater than 50% residue.  These 
contradicting misclassifications represent less than 1% of the no-till and conventional tillage 
observations from roadside surveys and OpTIS-mapped classifications.   

One of these misclassification instances is outlined below (Figure 8).  The crop consultant estimated 
90% residue cover in early June, as is evident from the photo from June 9, 2018.  However, OpTIS-
mapped estimated high residue cover until the last week of May, at which point a decrease of residue 
cover from 80% to 12% is identified.  No apparent reason for the mismatch was discerned. 

 
      6 May 2018                   9 June 2018              25 June 2018            OpTIS-mapped Residue   
Figure 8.  Roadside photos of field ID 86 -1751 in Missouri observed from 5/6/2018 to 
6/25/2018. The 2017 crop was soybean, 2017-2018 winter shows no cover crop but extensive weed 
cover, and 2018 crop was soy. 

B. Corn Belt Summary 

1. OpTIS Corn Belt Conservation Mapping Results 

In the Corn Belt as a whole, cover crops planted after corn and soy increased by 2.301 million acres 
in 2018 compared to cover crop acres in 2006 (Table 4).  Specifically, cover crop planting went from 
1.58% (1.893 million acres) to 3.34% (4.195 million acres) of corn and soy acres in the Corn Belt 
from 2006 to 2018.  Use of conservation tillage practices, where higher than 30% residue is left on 
the field at planting, increased by 5.953 million acres, when comparing 2006 to 2018.  
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Figure 9. Conservation Tillage and Cover Crop acres across HUC8 watersheds for 2018. 

Table 4. Yearly cover crops planted after soy and corn and conservation tillage acres in the Corn 
Belt.  

Years 
Cover Crop 

Acres 

% Area of 

Cover Crops 

Conservation 

Tillage Acres 

% Area of Conservation 

Tillage 

2005 1,893,988 1.58% 49,168,802 41.00% 

2006 2,048,408 1.66% 55,434,967 44.90% 

2007 922,791 0.77% 49,626,616 41.40% 

2008 1,376,498 1.15% 59,467,349 49.90% 

2009 823,177 0.69% 59,612,524 49.80% 

2010 905,700 0.74% 62,026,447 51.00% 

2011 1,104,235 0.90% 57,335,394 46.70% 

2012 2,053,488 1.66% 60,165,458 48.70% 

2013 2,461,176 1.97% 66,939,709 53.70% 

2014 1,567,566 1.26% 64,525,530 51.90% 

2015 1,091,400 0.88% 66,719,595 53.60% 

2016 3,610,345 2.96% 54,581,100 44.70% 

2017 5,047,262 4.06% 55,197,564 44.30% 

2018 4,195,429 3.34% 55,122,615 43.90% 
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Figure 10. Comparison of statewide acres of total cover crops planted and conservation tillage 
practices for the years 2006 and 2018. 

2. DNDC Corn Belt Results Summary: Soil Organic Carbon and Nitrous Oxide 

Figure 11.A (below) shows spatial patterns of changes to soil organic carbon stocks (dSOC) by 
HUC8 in the US Corn Belt study area.  On average, study area soils sequester SOC during the 2005-
2017 timeframe - the area-weighted mean dSOC rate is 161 kgC/ha/year (weighted SD = 89 
kgC/ha/year).  Rates vary by HUC8 from -197 to 366 kgC/ha/year (a negative dSOC value 
represents a loss of SOC to the atmosphere) - most HUC8s sequester carbon on average (265 of 275 
or 97%).  Many factors affect changes to SOC including the distribution of crops and their 
management in a HUC8 (specifically in this case, a higher fraction of conservation tillage and/or 
cover cropping in a HUC8 will tend to increase the dSOC rate), climate, and soils, particularly initial 
SOC. 

To demonstrate the effect of conservation practices on dSOC, we compared the OpTIS-mapped 
scenario with a No Soil Health Management scenario (i.e. conventional tillage all the time and no 
cover cropping, “no SHM”).  Under no SHM, the study area would lose SOC at an area-weighted 
mean annual rate of -65 kgC/ha/year (weighted SD = 117) - only 38% of HUC8s sequester carbon 
on average (103 of 274).  Figure 11.B shows differences in dSOC by HUC8 (OpTIS-mapped minus 
no SHM) - all differences are positive indicating that, at least at HUC8-level, on average, when soil 
health management practices are used, SOC sequestration is always increased.  While the no SHM 
scenario is an extreme case and not an accurate representation of the actual distribution of 
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management practices prior to 2005, this comparison demonstrates the benefits of SHM practices 
with respect to SOC sequestration as well as DNDC’s ability to flexibly simulate alternative 
management.  
 

 
Figure 11. A) Area-weighted mean annual SOC stock change rates (dSOC, kgC/ha/yr) by HUC8 
from 2005 to 2017 simulated with OpTIS-mapped management practices (negative dSOC values 
represent a loss of SOC); B) Additional mean annual SOC accumulation (kgC/ha/yr)  from OpTIS-
mapped management by HUC8 (compared to no soil health management practices scenario). 

Mean annual nitrous oxide (N2O) emissions from OpTIS-mapped management are shown in figure 
12.A (below).  Area-weighted mean annual N2O emissions in the study area are 1.6 kgN/ha/year 
(weighted SD = 0.51 kgN/ha/y) - HUC8-level emissions range from 0.38 to 2.95 kgN/ha/year.  
The strongest predictors of N2O rate are fertilizer N rate and soil texture although N2O emissions 
are affected by numerous factors including climate (particularly typical precipitation patterns), other 
soil attributes (including SOC, particularly as affected by tillage), and prevalence of cover cropping. 

As we did for dSOC, we compared the OpTIS-mapped scenario to the no SHM scenario (OpTIS-
mapped minus no SHM - figure 12.B).  Under no SHM, area-weighted mean annual N2O emissions 
are 2.2 kgN/ha/year (weighted SD = 0.98 kgN/ha/y) - this scenario increases N2O emissions for 
most HUC8s (262 of 274 or 96%).  This increase has two likely major causes: with no cover 
cropping there are likely enhanced spring N2O emissions as residual soil N tends to be higher than 
with cover crops; under conventional tillage N cycling tends to increase (decreased N 
immobilization and increased mineralization) thereby increasing N losses, particularly N2O. 
 



22	

	

 
Figure 12. A) Area-weighted mean annual N2O emissions (kgN/ha/yr) from 2005 to 2017 by 
HUC8 in the Corn Belt, simulated with OpTIS-mapped management practices. B) Difference 
between OpTIS-mapped management and no SHM scenario N2O emission rates (kgN/ha/yr) 
between 2005 and 2017 by HUC8. 

V. Comparison with AgCensus and Other Mapping Efforts 

The OpTIS mapped tillage practice and cover crop results were compared to estimates from two 
additional efforts at the county scale in Iowa.  First, OpTIS maps of conservation tillage and cover 
cropping in 2017 were compared to the results of the 2017 AgCensus.  

 
Figure 13. A) OpTIS mapped conservation tillage correlates well with AgCensus reported 
conservation tillage – 0.80 correlation coefficient; B) OpTIS mapped cover crops correlate 
moderately well with AgCensus reported cover crops– 0.67 correlation coefficient. 
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It is important to note that OpTIS and the AgCensus take different approaches to estimating 
adoption of conservation practices.  OpTIS relies on data from earth observing satellites and 
computer algorithms, while the AgCensus relies on a complete census of growers.  Therefore, 
OpTIS does not capture the intent of the grower, while the AgCensus might capture intent.  For 
example, a grower can plant cover crops in the fall but a cold snap in fall and a subsequent wet 
spring could prevent the cover crop from establishing a full canopy.  In this case, it is likely that 
OpTIS would not register a cover crop, while the AgCensus might. 

Next, OpTIS maps of cover cropping were compared to county-level maps of cover crops produced 
by the Environmental Working Group (EWG) in the winters of 2015 - 2016 and 2017 - 2018. 

 
Figure 14. Comparison of county-level cover crop acreage for Iowa in 2015 - 2016 and - 2018 as 
estimated from two different methods: OpTIS (x-axis) and EWG (y-axis).  

The two sources of estimates are significantly correlated in both years.  Maps of 2017 to 2018 show 
a clump of outliers where OpTIS estimates low cover crop acreage (0-5,000) while EWG estimates 
significantly higher acreage (10,000 - 20,000). 

Overall, OpTIS estimates correlate closely with estimates from other sources, but some significant 
county-level differences exist and should be explored. 

VI. Conclusion 

Farming practices have changed across the corn belt over the past decade. Conservation tillage 
practices continue to be implemented and expanded in some regions and the use of cover crops is 
growing quickly in many areas.  These “soil smart” agronomic practices have a substantial effect on 
environmental outcomes, such as soil carbon and nitrous oxide emissions.  Information from tools 
like OpTIS and DNDC can be used by a variety of stakeholders to better understand how row crop 
farming is changing and how these changes are affecting the soil, water, and atmosphere.   
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