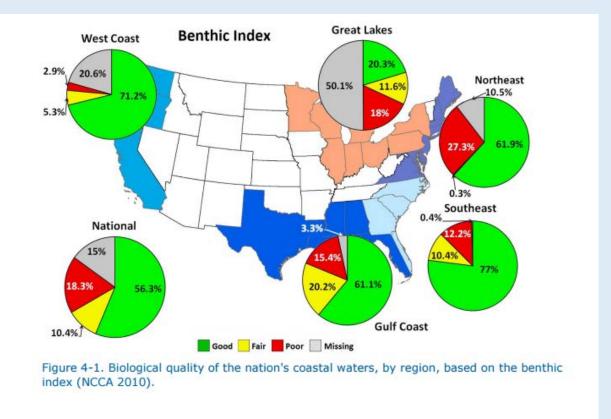
AMBI and M-AMBI for use in National Coastal Condition Surveys

Marguerite (Peg) Pelletier

EPA ORD National Health and Environmental Effects Research Laboratory

Atlantic Ecology Division

Existing Coastal Indices



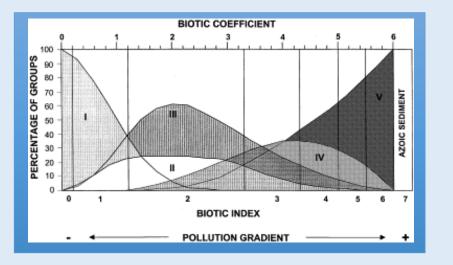
Region/	Data Source	Statistical Method	Component Metrics	Index Condition Scale		
Province				Good	Fair	Poor
Northeast/ Acadian	NCA 2000-2001	Logistic Regression Analysis	Diversity (Shannon H') Pollution Tolerant Taxa Proportion Capitellids	> 5	4 – 5	< 4
Northeast/ Virginian	EMAP 1990-1993	Discriminant Analysis	Diversity (Gleason <i>D</i>) Abundance Tubificids Abundance Spionids	> 0	n/a	≤ 0
Southeast/ Carolinian	EMAP 1993-1994	Cluster Analysis	Abundance Species Richness Dominance Pollution Sensitive Taxa	> 2.5	2 – 2.5	< 2
Gulf/ Louisianan	EMAP 1991-1992	Discriminant Analysis	Diversity (Shannon H') Abundance Tubificids Proportion Capitellids Proportion Bivalves Proportion Amphipods	> 5	3 – 5	< 3

West Coast S		st Salinity	Salinity-adjusted expected number of species			
		Good	Fair	Poor		
	West	Observed species richness is more than 90% of the lower 95% confidence interval of expected species richness for a specific salinity.	is between 75% and 90% of the lower 95% confidence	Observed species richness is less than 75% of the lower 95% confidence interval of expected species richness for a specific salinity.		

Existing Coastal Indices

- Benthic Indices developed and calibrated separately for each Region
- Concerns about cross-region comparability

AMBI – Initial Development


Marine Pollation Bulletin Vol. 40, No. 12, pp. 1100–1114, 2000 © 2000 Elsevier Science Ltd. All rights reserved Printed in Great Britain 0025-326X/00 \$ - see front matter

A Marine Biotic Index to Establish the Ecological Quality of Soft-Bottom Benthos Within European Estuarine and Coastal Environments

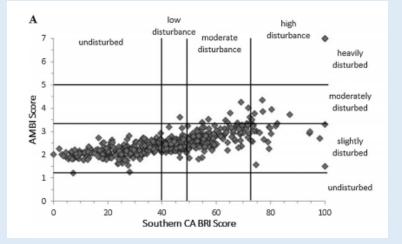
PII: S0025-326X(00)00061-8

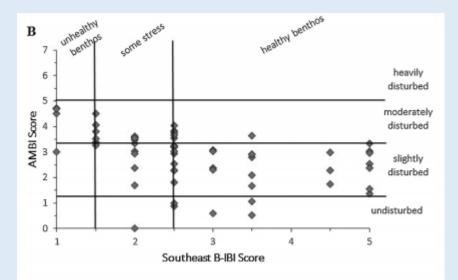
A. BORJA*, J. FRANCO and V. PÉREZ

Department of Oceanography and Marine Environment, Technological Institute for Fisheries and Food (AZTI), Av. Satrústegui 8, 20008 San Sebastián, Spain

BI =

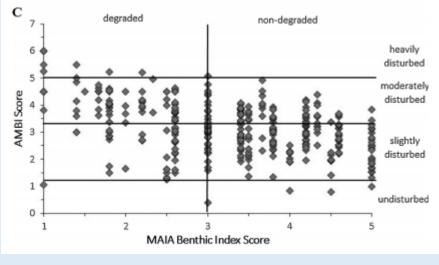
0 * % EG I + 1.5 * % EG II + 3 * % EG III + 4.5 * EG IV + 6 * EG V

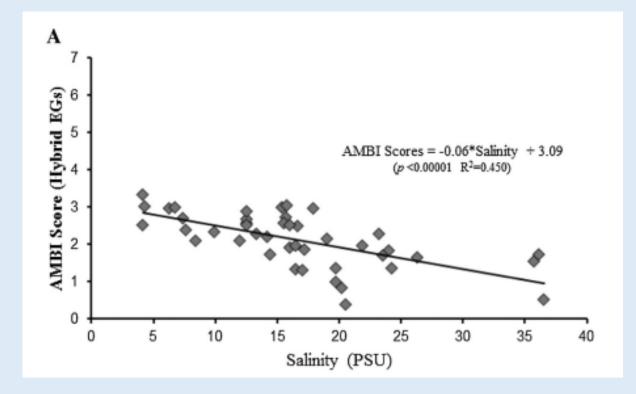

Range =


0 (unimpacted) to 6 (heavily impacted) or 7 (azoic)

• Previous Case Studies in FL, SoCal, Chesapeake Bay, Northwest

- 3 Day workshop (Sept 2011)
- NCCA species categorized by EG group
- Workshop EG list augmented with existing European EG list
- 3 regional Datasets assembled compared local index to AMBI
- Published results in 2015





R = 0.736, p<0.0001

R = 0.525, p<0.0001

R = 0.437, p<0.0001

• Strong salinity bias seen in unimpacted station in the southeast and mid-Atlantic (SoCal is primarily high salinity sites so a salinity bias would not be expected)

M-AMBI – Initial Development

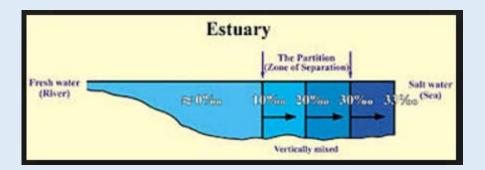
Available online at www.sciencedirect.com

Marine Pollution Bulletin 55 (2007) 16-29

www.elsevier.com/locate/marpolbul

Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive

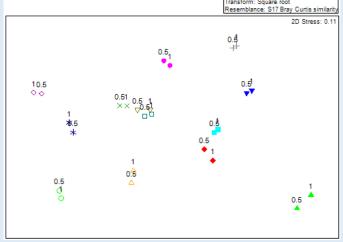
Iñigo Muxika *, Ángel Borja *, Juan Bald


AZTI-Tecnalia, Marine Research Division, Herrera kaia, Portualdea, z/g, 20110 Pasaia, Spain

- Used Factor Analysis to combine AMBI, diversity (H') and species richness into a new index
- Classified by habitat (salinity and location (coastal)
- Good and Bad endpoints derived for each metric
- Range = 0 (Bad) to 1 (High)

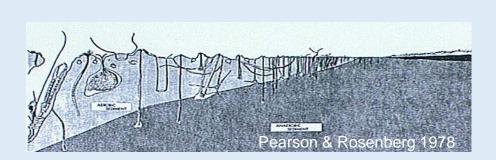
Stretches

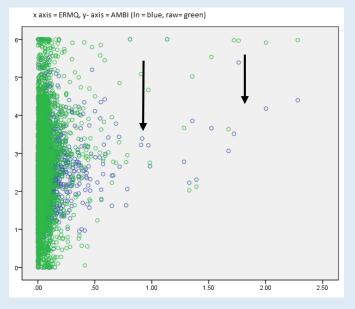
Oligo/mesohaline Polyhaline Euhaline (estuarine) Euhaline (coastal)


• Venice salinity classification to identify habitats

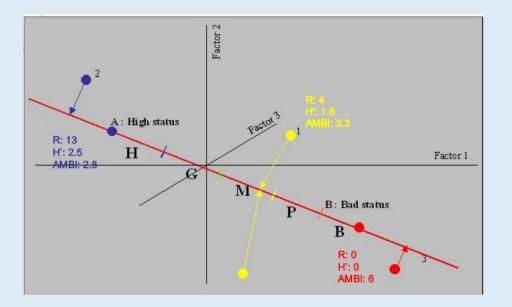
Habitat	Salinity (psu)			
Tidal Freshwater		<0.5		
Oligohaline	0.5	to	<5	
Mesohaline	5	to	<18	
Polyhaline	18	to	<30	
Euhaline	30	to	<40	
Hyperhaline		>=40		

 Examined West Coast data – used larger grab (0.1 m² grab vs 0.04 m² grab or equivalent) and sieve (1.0 mm vs. 0.5 mm)


- West Coast gear differences
 - Sieve size differences did not appear to be significant based on subset of stations using both sieves



• Grab size impacted the total number of species


95th percentile (S, H')	Rest of US			WEST		
5th percentile (AMBI)	S	Η'	AMBI	S	H'	AMBI
Polyhaline mud	31	2.74	1.07	67	3.03	1.31
Polyhaline sand	50	3.06	0.60	80	3.33	0.00
Euhaline mud	49	3.07	0.94	78	3.40	1.58
Euhaline sand	62	3.34	0.57	104	3.73	0.38

- Derived Bad/High endpoints for factor analysis calculation based on habitat
 - Tidal freshwater, Oligohaline, Mesohaline, Hyperhaline few of these sites on West coast, so calculated for entire US
 - Polyhaline and Euhaline calculated thresholds separately for West only and Rest of US
- Used raw abundance (rather than In(abundance) as in Gillett paper) due to dampening of benthic response to chemical contamination

- Using 2000-2006 NCA data, explored use of metrics other than S and H' (e.g., dominance % oligochaetes)
- Calculating M-AMBI for 3 validation datasets
 - Compare to local indices
 - Look at calibration accuracy vs. apriori Good/Bad sites
 - Look to see if salinity correlation has been reduced or eliminated

Summary

- AMBI is an abundance-weighted tolerance index analogous to the Hilsenhoff Index (conceptually)
- M-AMBI is multivariate AMBI
 - Accounts for naturally structuring parameters (e.g., salinity)
 - Improves index performance by adding additional metrics
- For the Great Lakes we would like to have an index that is conceptually compatible with the estuarine approach, if possible

